

1/ The standard recipe for ViTs is suboptimal for adversarial training

Strong data augmentation and lower weight decay help in standard training, but hurt adversarial training Adversarial training

2/ Our "light" recipe

- 10 epochs linear ε-warmup
- basic data augmentation
- high weight decay

Feature	Accuracy	
	Clean	Rol
XCiT-S12	71.68	28
+ ε-warmup	71.98 (+0.30)	29.36
+ Tuned data augmentation	71.70 (-0.28)	38.78
+ Tuned weight decay	72.34 (+0.64)	41.78

A Light Recipe to Train Robust Vision Transformers ETHzürich Edoardo Debenedetti (ETH Zurich - EPFL), Vikash Sehwag (Princeton University), Prateek Mittal (Princeton University)

3/ The recipe generalizes to other datasets via fine-tuning ...

4/ ... and to other architectures

bust

8.70

(+0.66)

(+9.42)

(+3.00)

5/ The recipe affects adversarial training's inner optimization

Attacking a model with few steps is easier for some architectures than for others, when trained with the right training recipe. This makes the resulting models more robust.

6/ Perceptual perturbations

We quantify that perturbations targeting more robust models are more aligned with perception

Flat-Coated Retriever

Oscilloscope

