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Adversarial Examples

“Castle” “Bee”
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[1] Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).
[2] Biggio, Battista, et al. "Evasion attacks against machine learning at test time." Joint European conference on machine learning and knowledge discovery in databases. Springer, 
Berlin, Heidelberg, 2013.



A solution: adversarial training
- Train on adversarial examples instead of clean data
- Theoretically principled and effective in practice

3
[3] Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." arXiv preprint arXiv:1706.06083 (2017).

Find perturbation 
for the model at 

epoch 1

Feed perturbation 
to model at epoch 1

Epoch 1 Model at 
epoch 1

Epoch 2 Model at 
epoch 2

Update model



A solution: adversarial training
- Train on adversarial examples instead of clean data
- Theoretically principled and effective in practice

4
[3] Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." arXiv preprint arXiv:1706.06083 (2017).

Find perturbation 
for the model at 

epoch 2

Feed perturbation 
to model at epoch 2

Epoch 2 Model at 
epoch 2

Epoch n Model at 
epoch n

…



The Vision Transformers (ViTs) family is here!

5Data in the plot from PapersWithCode: https://paperswithcode.com/sota/image-classification-on-imagenet, retrieved on 2022/2/6.
[4] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).
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Are ViTs good at adversarial training?

Despite being better than ResNet-50 in terms of clean accuracy when standardly 
trained, XCiT-S performs worse if trained with adversarial training. 

[5] Ali, Alaaeldin, et al. "Xcit: Cross-covariance image transformers." Advances in neural information processing systems 34 (2021).
[6] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Contributions of this work

- Vision Transformers can be competitive at adversarial training, but need a 

custom adversarial training recipe

- Our recipe generalizes to larger variants and different architectures

- One potential reason of why the recipe matters so much: it influences the 

inner part of adversarial training
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Set-up

- Adversarially train on ImageNet using 1-step FGSM for L-∞ perturbations with ε = 
4/255

- Start from the standard training set-up of DeiT
- Search for optimal parameters in terms of:

- Architecture
- Warming up attack strength
- Data augmentation
- Weight decay

- Evaluate using AutoAttack (but the intermediate ablations with the faster 
APGD-CE)
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[7] Wong, Eric, Leslie Rice, and J. Zico Kolter. "Fast is better than free: Revisiting adversarial training." arXiv preprint arXiv:2001.03994 (2020).
[8] Touvron, Hugo, et al. "Training data-efficient image transformers & distillation through attention." International Conference on Machine Learning. PMLR, 2021.
[9] Croce, Francesco, and Matthias Hein. "Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks." International conference on machine 
learning. PMLR, 2020.



Finding the optimal recipe: Bag-of-tricks

Summary of the improvements given by each phase of the ablation. 
Overall, we improve the robust accuracy by 13.08%, and the clean 

one by 0.66% over the baseline. 10
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The optimal recipe scales up!

Comparison of our robust models to models from other works. The GELU ResNet-50 
is from Bai et al. [2021] and the WRN-50-2 is from Salman et al. [2020].
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[10] Bai, Yutong, et al. "Are Transformers more robust than CNNs?." Advances in Neural Information Processing Systems 34 (2021).
[11] Salman, Hadi, et al. "Do adversarially robust imagenet models transfer better?." Advances in Neural Information Processing Systems 33 (2020): 3533-3545.



And generalizes to other architectures!

14
Our recipe brings significant improvements for a range of architectures.
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The recipe influences adversarial training’s inner loop

17

“Standard training” part“Finding adversarial examples” part

When training, we want to generate strong adversarial examples with few PGD 
steps.

[16] Xie, Cihang, et al. "Smooth adversarial training." arXiv preprint arXiv:2006.14536 (2020).
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The recipe influences adversarial training’s inner loop
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A small relative difference suggests that we need few PGD steps to get a 
strong enough adversarial example.



The recipe influences adversarial training’s inner loop
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* canonical recipe

- Models that end up being more robust show smaller relative differences 
throughout the training, at different relative steps.

- The relative differences for XCiT-S12 trained with the canonical recipe are 
significantly larger!



This work

- Vision Transformers can be competitive at adversarial training, but need a 
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ViTs and variations — Vision Transformer

Image from Dosovitskiy et al. [2021] 22



ViTs and variations — Class Attention

Image from Touvron et al. [2021] 23



ViTs and variations — Cross-covariance ViT (XCiT)

Image from El-Nouby et al. [2021] 24



Data augmentations

MixUp CutMix

25Zhang, Hongyi, et al. "mixup: Beyond empirical risk minimization." arXiv preprint arXiv:1710.09412 (2017).
Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). Cutmix: Regularization strategy to train strong classifiers with localizable features. ICCV



Data augmentations
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Zhong, Zhun, et al. "Random erasing data augmentation." Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 07. 2020.
Cubuk, Ekin D., et al. "Randaugment: Practical automated data augmentation with a reduced search space." Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition Workshops. 2020.

RandAugment

Random Erasing



Set-up for standard training ≠ set-up of adversarial training

Top performing data augmentation set-ups for both standard and adversarial 
training. The tuned set-up improves the original one by 3.84%.
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Our recipe generalizes to the L2 threat-model
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Comparison between the canonical recipe and our recipe on ImageNet for L2 
perturbations with ε = 3.0. The ReLU ResNet-50 is from Salman et al. [2020].



Pre-training and model adaptation
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- We pre-train XCiT-S on ImageNet for ε = 8/255
- We adapt the patch embedding layer to fine-tune on CIFAR-10 and 

CIFAR-100 which have 32x32 resolution (vs. ImageNet’s 224x224)
- We fine-tune on CIFAR-10, CIFAR-100, Caltech-101, and Oxford Flowers 

[12] Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009
[13] Fei-Fei, Li, Rob Fergus, and Pietro Perona. "Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories." 
2004 conference on computer vision and pattern recognition workshop. IEEE, 2004.
[14] Nilsback, Maria-Elena, and Andrew Zisserman. "Automated flower classification over a large number of classes." 2008 Sixth Indian Conference on Computer Vision, Graphics & 
Image Processing. IEEE, 2008. 

Dataset samples from the TensorFlow Datasets website



Pre-training and model adaptation

Comparison between XCiT-S12 trained with our recipe vs. the canonical recipe and 
WideResNet-28-10 from Hendrycks et al. [2019] (for CIFAR) / ResNet-50 from Salman et al. [2020] 

(for Oxford Flowers and Caltech-101)

30[15] Hendrycks, Dan, Kimin Lee, and Mantas Mazeika. "Using pre-training can improve model robustness and uncertainty." International Conference on Machine Learning. PMLR, 
2019.



Model adaptation

Diagram generated with http://alexlenail.me/NN-SVG/AlexNet.html
31



Model adaptation

Diagram generated with http://alexlenail.me/NN-SVG/AlexNet.html
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CIFAR-10
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CIFAR-100
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CIFAR-100
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Is PGD-200 a good oracle?
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Saturating of the cross-entropy loss in separate runs of PGD attacks with different 
numbers of steps, perturbing the same input.



XCiT’s attacks are more perceptual

- We rescale the perturbations in [0, 1]
- We classify the perturbations using state of the art ImageNet models
- More perceptual perturbations should be classified more correctly
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Robust ResNet from Bai et al. [2021], non-robust ResNet from Wightman et al. [2021], non-robust XCiT from El-Nouby et al. [2021]

[22]  Wightman, Ross, Hugo Touvron, and Hervé Jégou. "Resnet strikes back: An improved training procedure in timm." arXiv preprint arXiv:2110.00476 (2021).
[23] Ali, Alaaeldin, et al. "Xcit: Cross-covariance image transformers." Advances in neural information processing systems 34 (2021).



38



39


