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Notation

In this thesis, we will use the following notation conventions, borrowed from
I. Goodfellow et al. (2016)2.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

diag(a) A square, diagonal matrix with diagonal entries given
by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

Ai,j Element (i, j) of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Sets

A A set

R The set of real numbers

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

Linear Algebra Operations

A⊤ Transpose of matrix A

A⊙B Element-wise (Hadamard) product of A and B

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

2A TeX file with the notation can be downloaded at https://github.com/goodfeli/
dlbook_notation/.
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Probability

p(a) A probability distribution over a continuous variable,
or over a variable whose type has not been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

DKL(P∥Q) Kullback-Leibler divergence of P and Q

Functions

f : A → B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes we
write f(x) and omit the argument θ to lighten notation)

||x||p Lp norm of x

||x|| L2 norm of x

Sometimes we use a function f whose argument is a scalar but apply
it to a vector, matrix, or tensor: f(x), f(X), or f(X). This denotes the
application of f to the array element-wise. For example, if C = f(X), then
Ci,j,k = f(Xi,j,k) for all valid values of i, j and k.

Datasets and Distributions

pdata The data generating distribution

p̂data The empirical distribution defined by the training set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised learning

X The m× n matrix with input example x(i) in row Xi,:
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Abstract

Machine learning models are vulnerable to adversarial examples: perturba-
tions added to benign inputs in order to fool a model into making a wrong
prediction. The most successful approach to defend against adversarial
examples is adversarial training, a training technique which is theoretically
principled and highly effective in practice. Adversarially trained models are
more robust to adversarial perturbations, albeit at the expense of the accu-
racy on clean samples, leading to a robustness-accuracy trade-off. Currently,
the community resorts to deeper and wider models to improve this trade-off,
hence decreasing the efficiency and practicality of adversarial training. In
this work we show that, by switching to Vision Transformers (in particular
XCiT, a Vision Transformer variation) than the ones most commonly used
(ResNets and WideResNets), we can improve this trade-off without the
need to use larger models, hence improving the practicality of adversarial
training. We manage to do so by finding a tailored adversarial training
recipe –different from the default recipe for standard training– which leads to
state-of-the-art results by a significant margin. We also show that this setup
scales to larger variants of XCiT, and that models trained with this setup
can be fine-tuned on other smaller datasets, such as CIFAR-10, Caltech-101,
and Oxford Flowers. Moreover, we compare the adversarial perturbations of
our robust XCiT to those of a robust ResNet, quantifying that the former
captures more semantic attributes than the latter.

To the best of our knowledge, this is the first work to establish superiority
of Vision Transformer over CNNs in robust machine learning. Thus, we
highly recommend the use of ViTs for adversarial training.
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1 Introduction

Despite their success, machine learning models are vulnerable to small
perturbations –called adversarial examples– that are often imperceptible
to the human eye (Biggio et al. 2013; Szegedy et al. 2013). This can
be a cause of concern if the models are deployed to real-world, safety-
critical systems (Kurakin et al. 2016). In the case of image classification,
such perturbations can mislead the model, and make it predict a different
label than the correct one. The study of the adversarial robustness for
Convolutional Neural Networks (CNNs) is a well-established sub-field of the
machine learning research community, and many defenses have been proposed.
The large majority of the defenses are based on adversarial training (Madry
et al. 2017), which consists of training the model on adversarial examples
instead of clean data. Previous work mostly focuses on either the algorithmic
aspect of training (Hongyang Zhang et al. 2019; Rade et al. 2021) or on
ways to better leverage data (Rebuffi et al. 2021; Sehwag et al. 2021; Gowal
et al. 2021) instead of architectural components (Huang et al. 2021). As
a matter of fact, ResNet variations, such as ResNet (He et al. 2015) and
WideResNet (Zagoruyko et al. 2016) are the de facto standard when it comes
to training models robust to adversarial examples (Gowal et al. 2021; Rebuffi
et al. 2021; Pang et al. 2022; Rade et al. 2021).

Notwithstanding a big effort from the research community, adversarial
training hurts the accuracy of the model on clean data. Moreover, it is
possible to observe in RobustBench’s leaderboard (Croce et al. 2020a) that,
to keep a good robustness-accuracy tradeoff, the community resorts to
deeper, wider, and less efficient models, creating a robustness-accuracy-
efficiency trade-off. Previous work also attempts to improve robustness by
innovating the architectural side: the focus has been on CNNs, e.g., by
trying different activation functions (Xie et al. 2020; Bai et al. 2021). In this
work, we do a step toward answering the following question: can we get a
better accuracy-robustness-efficiency trade-off with tools and architectures
other than ResNets? Can we improve the current state of the art with
the plain formulation of adversarial training without paying high costs in
terms of efficiency and by leveraging different architectures such as Vision
Transformers (Dosovitskiy et al. 2021)?
Adversarial training for ViTs needs custom-tailored training recipes. Vision
Transformers outperform CNNs in terms of clean accuracy when standardly
trained (Dosovitskiy et al. 2021). However, training them adversarially to
do better than CNNs is not straightforward. The reason is that training
ViTs is, in general, a nontrivial task due to their lack of inductive bias, thus
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needing their own custom training recipes (Steiner et al. 2021). Nonetheless,
we show that it is possible to use ViTs to bring improvements on all three
fronts of the robustness-accuracy-efficiency trilemma. As the training setup
is an important component of training Vision Transformers, we first explore
an effective adversarial training recipe. Instead of just taking the original,
vanilla training recipe used by ViTs and successive works (Steiner et al. 2021;
Touvron et al. 2021a), we first analyze some ViT variations and architectural
components that could make ViTs more suitable for adversarial training.
We then identify a set of important parameters that have a fundamental
role in adversarial training, such as adversarial training warm-up, data
augmentations, and weight decay. We go beyond the original training recipes
commonly used for ViT-like models by doing a thorough search for the
optimal values of these parameters: we observe that the optimal choices
for non-adversarial training drastically differ from those for adversarial
training. In fact, we find that, while the use of strong data augmentation
is recommended for standard training (Steiner et al. 2021; Touvron et al.
2021a), this is not the case for adversarial training.

Using this tailored recipe, we show that we can effectively adversarially
train a ViT-like architecture (XCiT, El-Nouby et al. (2021)), in a variant
comparable to ResNet-50 in terms of the number of parameters and FLOPs.
With our setup, this variant improves both robust and clean accuracy by
a significant margin relative to the well-trained ResNet-50 by Bai et al.
(2021) (by 17.7% and 7.3% respectively). We then show that this setup
successfully scales up to larger variants of XCiT, which achieve even better
results (74.04% clean accuracy and 45.24% AutoAttack accuracy). Given
the staggering difference, we highly recommend that researchers in the field
should use Vision Transformers in adversarial training.
Adversarially trained XCiTs can be leveraged for fine-tuning. Further, given
the recipe we identify, we answer the following question: can we efficiently
leverage the pre-trained models by doing adversarial fine-tuning, keeping the
same good trade-off, thus achieving a better tradeoff than CNNs on smaller
datasets too? We show that this setup also works for larger perturbations
with minimal changes and that the resulting model can be successfully fine-
tuned on datasets in the low-data regime of both coarse- and fine-grained
nature (e.g., Caltech-101 (Fei-Fei et al. 2004) and Oxford Flowers (Nilsback
et al. 2008)). Also for this case, we employ XCiT, which gives a very good
trade-off, with just a 1% drop in clean accuracy between adversarial and
non-adversarial fine-tuning in the case of Caltech-101.
Gradients of adversarially robust XCiTs. Given the different nature of
ViTs, we finally do a brief analysis of the behavior of an adversarially
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trained XCiT, by studying its gradients. We first visualize the adversarial
perturbations of both the robust XCiT, as well as those of a robust ResNet-50.
Using quantitative metrics, we then show that the former ones are more
semantic than the latter ones. We then visualize the semantic nature of
the gradients by accumulating gradients to maximize specific, randomly
selected classes (Engstrom et al. 2019) and show that we get high-quality
visualizations that are semantically meaningful to the human eye.

Finally, we share3 the checkpoints of our models –including the optimizer
states– for different sizes and perturbations to enable other researchers to
fine-tune the models, as well as run further analyses.

This thesis is structured as follows: we first cover the background by
discussing the basics of adversarial robustness and adversarial training (sec-
tion 2.1), and an introduction to ResNets (section 2.2), the Transformer
architecture and some of its later developments (section 2.3). We then
cover related work about the adversarial robustness of vision transformers
(section 3.2). Next, we present our experiments about adversarially training
ViT-like models (section 4), and we finally conclude with a discussion of
potential future work (section 5).

3The checkpoints are on Google Drive (https://drive.google.com/drive/folders/
1Q_E3ryzgLCkvrtmrUjal9V3Eh0X-Vpsr?usp=sharing).
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2 Background

2.1 Adversarial Robustness

2.1.1 Adversarial examples

Adversarial examples can be created in several ways and can target different
threat models. Common threat models are perturbations bounded by some
Lp norm equal to ε, or perturbations embedded in so-called patches (Brown
et al. 2017). In this work, we focus on Lp-bounded perturbations, as it is
the most common threat model studied by previous work; in particular, we
focus on L∞ norm perturbations.

Adversarial examples can be either untargeted –when they aim at fooling
a classifier into outputting any other class than the correct one– or targeted
–when they aim at fooling a classifier into outputting a specific, wrong class.
We focus this work on untargeted attacks, which are stronger than the latter.
In the case of Lp-bounded perturbations, given an input x with label y, and
a loss function L, we can find an adversarial perturbation δ̂ by solving the
following constrained optimization problem:

δ̂ = arg max
δ:∥δ∥p≤ε

L(x + δ, y). (1)

The objective is usually optimized via projected gradient descent (PGD),
which consists of a gradient descent step, after which we project the pertur-
bation inside the allowed boundary (e.g., in the case of p = ∞, we clip each
component of the perturbation to be in [−ε, ε]), and project the input x + δ

to be in the allowed domain (e.g., in [0, 1] in the case of images).
One variation of PGD that can be used to find adversarial examples that

target the ℓ∞ threat model is the Fast Gradient Sign Method (FGSM) (I. J.
Goodfellow et al. 2014). FGSM, instead of adding the gradient at each step
of PGD, does just one step, and adds the component-wise sign of the gradient
multiplied by ε, instead of the gradient itself. Formally, given a set of allowed
inputs S and a projection operator Proj, we can find an adversarial example
x̂ from an input x with FGSM using the following formula:

x̂ = ProjS (x + εsign(∇xL(x, y))) . (2)

To generate adversarial examples with PGD or FGSM, we need to com-
pute the model’s gradient, w.r.t. the input x. For this reason, we need
white-box access to the model, i.e., we need access to the model internals
and parameters. There are also black-box attacks, which only have access to
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the value of the loss of the model, and optimize equation (1) via zeroth-order
optimization techniques, such as finite differences (Chen et al. 2017) and
random search (Andriushchenko et al. 2020). An alternative to zeroth-order
optimization is given by transfer attacks, which consists of generating an
adversarial example for a model for which we have white-box access. Then,
the adversarial example will likely transfer successfully to the victim model
to which we have black-box access (Papernot et al. 2017).

2.1.2 Adversarial training

There are several methods to defend from adversarial examples. One line
of work focuses on training models in a way that makes them resistant
to adversarial examples. The most studied and developed technique is
adversarial training (Madry et al. 2017). Adversarial training consists, at
each step, in generating adversarial examples and training the model using
the generated perturbed data instead of the original, clean data. Given
a model with parameters θ, input data x with label y sampled from a
distribution pdata, a set of allowed inputs S and a loss L, adversarial training
formally consists of optimizing the following min-max problem:

θ̂ = arg min
θ

E(x,y)∼pdata

[

max
δ∈S

L(x + δ, y;θ)

]

. (3)

We can note that the inner optimization problem consists of generating an
adversarial example for x, while the outer one consists of training the model.
In practice, we solve the outer optimization with stochastic gradient descent
or one of its variants and solve the inner one as explained in section 2.1.1.
It is also possible to use 1-step FGSM for the inner optimization to save
training time (Wong et al. 2020). While adversarial training is successful in
improving robustness to adversarial examples, on the other hand, it harms
the accuracy of the model when classifying clean data (Tsipras et al. 2018).

Several further techniques have been proposed to improve adversarial
training and the trade-off. Some of them include the optimization of a
different objective (Hongyang Zhang et al. 2019) to improve the clean and
robust accuracy trade-off, early stopping to avoid the so-called robust overfit-
ting (Rice et al. 2020), tuned data augmentation, weight averaging (Rebuffi
et al. 2021) etc.

TRADES. Hongyang Zhang et al. (2019) propose a different formulation
for adversarial training, with the aim of improving the accuracy-robustness
trade-off. This formulation, called TRadeoff-inspired Adversarial DEfense
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+ =

δ̂

“castle” “monastery”

x xadv

(a) Example of how an adversarial example can be created for a non-robust
model (ResNet-50 from Wightman (2019)): an image correctly classified as
“castle” that is misclassified as “monastery” when we add the perturbation.

+ =

δ̂

“castle” “castle”

x xadv

(b) Example of robust model (ResNet-50 from Bai et al. (2021)) trained with
adversarial training: an image correctly classified as “castle” is still correctly
classified when we add the perturbation. We can also note how the perturbation
generated for the robust model is different in nature from the one for the non-
robust one.

Figure 1: Differences between a non-adversarially and an adversarially trained
model, given perturbations found using 10 steps PGD with ε = 4/255.

via Surrogate-loss minimization (TRADES), add a regularization term to
the conventional loss used for standard training, which is meant to give
robustness to the model being trained. In particular, given the function of
the model f(x;θ) which takes as input x and is parametrized by θ, the
TRADES objective consists of solving the following optimization problem

θ̂ = arg min
θ

E(x,y)∼pdata

[

L(x, y;θ) + β max
δ∈S

DKL(f(x;θ)∥f(x + δ;θ))

]

,

(4)
where β is a coefficient chosen to weight the importance of the second
term, and DKL(f(x;θ)∥f(x + δ;θ)) is the Kullback-Leibler divergence (KL
divergence) of f(x;θ) (the output of the model given clean inputs) and
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f(x + δ;θ) (the output of the model given adversarially perturbed inputs).
The KL divergence of two distributions P and Q measures the difference
between these distributions and is defined as

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

(

p(x)

q(x)

)

, (5)

where p(x) and q(x) are the probability density functions of P and Q re-
spectively. In equation (4), the KL divergence measures how much the
output of the model given the clean inputs differs from the output given
the adversarially perturbed inputs. We can also note that, in equation (4),
there are two terms: one is the loss of the model on the clean data, and
the other term, weighted by a coefficient β, is the KL divergence given the
adversarial examples. This coefficient can be tuned to choose a balance for
the accuracy-robustness trade-off, i.e., a larger β will give better robustness,
but worse clean accuracy, and vice-versa for a smaller β.

2.1.3 Evaluation of defenses

Of course, the defenses proposed in the literature must be evaluated reliably
and effectively. On one side, it is possible to use standard attacks, such as
projected gradient descent (PGD). Using a larger number of steps helps in
increasing the reliability of the evaluation. However, some defense techniques
can result in gradient masking (Papernot et al. 2017), which can make the
PGD objective too hard to optimize due to the degradation of the model’s
gradients and give a false sense of security(Athalye et al. 2018). For this
reason, we can either use other standard attacks which find adversarial
examples by doing zeroth-order optimization, or we can design an adaptive
attack (Tramèr et al. 2020). Using an adaptive attack can ensure that
the evaluation is accurate, but designing one can take time, and it is not
something that can be easily standardized. For this reason, currently, the
most established evaluation technique is AutoAttack (Croce et al. 2020c), an
ensemble of four different parameter-free white- and black-box attacks. In
particular, the attacks are APGD-CE (Croce et al. 2020c), APGD-T (Croce
et al. 2020c), FAB (Croce et al. 2020b), and Square Attack (Andriushchenko
et al. 2020).

2.1.4 Adversarial robustness and interpretability

Gradients of non-robust models usually have no semantic meaning, and they
do not enable visualizing the model’s features in a meaningful way unless
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we use strong regularization (Olah et al. 2017). On the other side, previous
work by Engstrom et al. (2019) shows that gradients of models trained
robustly with adversarial training are more aligned with human perception.
This enables several new interesting visualizations, such as direct feature
visualization (Engstrom et al. 2019). To produce this visualization, Engstrom
et al. (2019) choose one activation in the penultimate layer of the robust
model and maximize it by optimizing the input via PGD, using a large ε as a
constraint for the Lp norm. By starting from images initialized randomly or
from images from a dataset, they observe that the results show features that
make sense to the human eye, suggesting that gradients of robust models
are indeed more aligned with human perception.

Seeds ( )x
0

Maximizing different coordinates ( )i

St
an

d
ar

d
R

o
b
u
st

Figure 2: Examples of direct feature visualization for random- and non-
random inputs, to maximize different activations. Borrowed from Engstrom
et al. (2019).

2.2 Convolutional Neural Networks and ResNet

Convolutional Neural Networks (CNNs) (LeCun et al. 1989) are Neural
Networks introduced at the end of the 80s that make use of convolutional
layers. Instead of computing the dot product between the input and a
learnable weight matrix, as in fully connected layers, convolutional layers
compute a convolution between the input and a learnable kernel. These layers
can be used for inputs with a grid-like topology both in 1-D (e.g., time-series),
2-D (e.g., gray-scale images), and 3-D (e.g., RGB images) (I. Goodfellow
et al. 2016). Using convolutions brings several advantages that include a
smaller memory footprint (given that the convolutional kernel usually has
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Figure 3: Illustration of a residual connection. Figure reproduced from He
et al. (2015).

a small size) and a great fit to detect local features, which is enabled by
the very nature of the convolution operator. Moreover, convolutions are
translation invariant, meaning that they can detect specific features in an
image independently of the location of such features. For these reasons, they
have been the de facto standard for computer vision tasks since the work by
Krizhevsky et al. (2012). In particular, they train a deep CNN by leveraging
an efficient GPU implementation.

A further breakthrough is introduced with ResNet (He et al. 2015), an
architecture including an innovation which enables training deeper networks
to improve the performance. This improvement consists of residual (or
shortcut) connections. If we consider a series of operations f(x), a residual
connection consists in taking as result f(x) + x, instead of just f(x). This
simple idea is illustrated in figure 3. Thanks to residual connections, the
optimization procedure converges to better results.

2.3 Vision Transformers and their variants

2.3.1 Attention and the Transformer architecture

The Transformer architecture (Vaswani et al. 2017) is an architecture for
sequence transduction and Natural Language Processing (NLP) tasks (e.g.,
machine translation) based on attention mechanisms. This architecture
has an encoder-decoder structure, where both the encoder and the decoder
include a series of so-called Multi-Head Attention layers, each followed by a
Multi-Layer Perceptron layer. Each layer has a residual connection. This ar-
chitecture takes as input a series of words, which are tokenized and embedded
into vectors of size dmodel.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 4: Schematic drawings representing the various steps of scaled dot-
product attention and multi-head attention. Figure borrowed from Vaswani
et al. (2017).

Attention. An attention function maps a query vector and a set of key-
value vector pairs to an output vector. In particular, the form of attention by
Vaswani et al. (2017), called Scaled Dot-Product Attention, can be formally
expressed as

Attention(Q,K,V ) = Softmax

(

QKT

√
dk

)

V , (6)

where Q, K, and V represent respectively the set of queries, keys, and values
grouped in matrices, and dk represents the dimension of the queries and
the keys, while the values have dimension dv. The product is scaled by 1√

dk
to compensate for the fact that the dot products can reach large values in
magnitude when dk is large. Large values would saturate softmax and make
its gradients very small. In practice, in the context of NLP, attention is
computed among different words (or parts of words). Given a set of words
(e.g., a sentence), it measures how much a word is dependent on another
word in the same set. For instance, in the sentence “This is Edoardo’s
thesis”, “this” will attend to “is”, which will, in turn, attend to “thesis”. The
main advantage of attention, when compared to convolutions, is the ability
to capture long-distance dependencies between tokens, which is something
convolutions fail to do because of the local nature of the convolution operator.
This is a useful property in NLP because a word at the beginning of a sentence
could be strongly related to another word at the end of it.
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Multi-Head Attention. Before passing Q, K, and V to the Attention
function, Vaswani et al. (2017) linearly project, using learnable matrices, the
inputs into vectors with dimension dk, dk, and dv respectively. Moreover,
instead of doing it just once, they do it h times, and each projection is
passed to the Attention function simultaneously, creating the so-called Multi-
Head Attention. After the parallel processing, the resulting matrices are
concatenated and linearly projected, using, again, a learnable matrix. Parallel
processing enables the model to efficiently process information from different
representations of the inputs. Formally,

MultiHead(Q,K,V ) = Concat(head1, . . . , headh)WO,

where headi = Attention(QW
Q
i ,KWK

i ,V W V
i ),

(7)

where W
Q
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk , W V
i ∈ R

dmodel×dv , and WO ∈
R
hdv×dmodel are the learnable matrices used to linearly project the inputs

and the result of the Attention operation. Finally, we call Self-Attention the
special case where K = V , and –analogously– Multi-Head Self-Attention
(MSA) a Multi-Head Attention in the case where K = V .

The MLP block and the overall Transformer block. After computing
self-attention for the inputs, Vaswani et al. (2017) pass the result to a
fully connected Multi-Layer Perceptron (MLP) block with one hidden layer.
Formally, given an input x, and learnable weights and biases W1, b1, W2,
b2, and an activation function ρ, the MLP block can be expressed as

MLP(x) = ρ(xW1 + b1)W2 + b2. (8)

Vaswani et al. (2017) use the Rectified Linear Unit (ReLU) as activation
function. Moreover, they apply layer normalization (Ba et al. 2016) both
after the MSA and the MLP residual connections.

To summarize, given an input xl to the l-th Transformer block, a multi-
head self-attention block MSA, an MLP block, and a layer normalization
block LN, the overall Transformer block can be expressed as:

x′
l = LN(xl + MSA(xl))

xl+1 = LN(x′
l + MLP(x′

l)).
(9)

Positional encoding. We note that attention, per se, considers the input
as a set, and not as a sequence. Hence, all information about the position of
the inputs is completely lost. For this reason, Vaswani et al. (2017) add the
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Figure 5: Schematic figure representing the overall structure of the original
Transformer architecture. Figure borrowed form Vaswani et al. (2017)

so called Positional Encodings to the input embeddings before feeding them
to the encoder and the decoder. The positional encodings have the same
size as the embeddings of the input tokens, i.e., dmodel.They adopt sine and
cosine functions of different frequencies, which are fixed (i.e., not learned):

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel),
(10)

where i is the dimension and pos is the position.

2.3.2 Vision Transformers

Overall structure. The Transformer architecture can also be easily adapted
for computer vision tasks (Dosovitskiy et al. 2021). The resulting architecture
is called Vision Transformer (ViT). In particular, it is possible to divide
the input images into non-overlapping patches, which are then embedded
into tokens. The biggest advantage of using attention for computer vision
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Figure 6: Schematic figure representing the overall structure of the original
Vision Transformer architecture. Figure borrowed form Dosovitskiy et al.
(2021).

tasks is that it can measure how much a portion of an image attends to
another one, enabling the possibility of working more at a global level than
a local one, as convolutions do. For instance, in an image of a cat, the tail,
or the paws, will attend to the cat’s head, and vice-versa. Given the nature
of image classification, there is no need for an encoder-decoder structure:
Dosovitskiy et al. (2021) simply use the same structure as the encoder, i.e.,
input embedding, followed by a series of blocks composed of an MSA block
and an MLP block. Moreover, at the end of the last block, there is the
so-called “MLP Head”: an MLP which takes as input a special token, called
[class] token (discussed below), resulting from the last attention block,
and maps it to the class predicted for the input. Moreover, differently from
the original transformer architecture, they use Gaussian Error Linear Unit
(GELU) (Hendrycks et al. 2016) as activation function ρ in the MLP block
(equation (8)), and they apply layer normalization to the input of each MSA
and MLP block, instead of the output of the respective residual connections.
To summarize, equation (9) becomes:

x′
l = xl + MSA(LN(xl))

xl+1 = x′
l + MLPGELU(LN(x′

l)).
(11)

Input tokenization and positional encoding. Considering each pixel
as a token and computing attention between every pixel would be unfeasible,
as the attention operation has O(n2) complexity for both memory and
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runtime. For this reason, Dosovitskiy et al. (2021) split the image into
non-overlapping input patches. The patches are embedded into tokens by
reducing, by the size of the patches, the overall number of inputs to the
attention operation. The patches are embedded by linearly projecting them
to vectors of dimension R

d
model. In practice, the projection is efficiently

implemented with a convolution layer that has as stride the patch size, as
input channels the number of channels of the input image (e.g., 3 in case of
RGB images), and as output channels dmodel. Given an image of size (H,W )
and patches of size (P, P ), the resulting number of patches is N = HW/P 2.

A further difference between the architecture proposed by Dosovitskiy
et al. (2021) and the original Transformer (Vaswani et al. 2017) is the fact
that the positional encodings, instead of being fixed and pre-determined, are
learnable.

Class token. After the input tokens are generated, a vector is prepended to
the sequence of tokens and processed along with the other tokens. This vector,
called [class] token, is then taken from the results of the last attention block
and is passed to the classification head that computes the class predicted for
the input. The initial state of the vector (i.e., the vector that is prepended
to the tokens before being processed) is a learnable parameter of the model.
The class token is meant to attend to the most relevant parts of an image,
e.g., in the case of an image with a cat, the [class] token will attend to
the patches, including the cat’s head, its tail, and its whiskers.

Performance of Vision Transformers. Vision transformers achieve
state-of-the-art performance on several datasets, such as ImageNet (Deng
et al. 2009), CIFAR-10, and CIFAR-100 (Krizhevsky 2009). In particular,
their maximum potential is reached when they are pre-trained on larger
datasets, such as ImageNet-21k and JFT-300M (Sun et al. 2017). In this way,
they can learn representations that are more generalizable and do not overfit
when they are trained on smaller datasets such as CIFAR-10 and CIFAR-100.
To reduce the need for pre-training on larger datasets, concurrent work by
Touvron et al. (2021a) and Steiner et al. (2021) shows that a tuned training
recipe, strong regularization, and data augmentations, such as CutMix (Yun
et al. 2019), RandAugment (Cubuk et al. 2020), MixUp (Hongyi Zhang et al.
2017), and RandomErasing (Zhong et al. 2020), lead to a ten-fold decrease
in the need of data to achieve the same performance. In particular, Touvron
et al. (2021a) call the model trained with this training recipe DeiT.
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2.3.3 Class Attention in Transformers

In order to train deeper vision transformers, Touvron et al. (2021b) introduce
two innovations: LayerScale and Class Attention.

LayerScale. LayerScale consists of two learnable diagonal matrices: one is
multiplied to the result of the attention operation, and the other is multiplied
to the result of the MLP block. Formally, given the two LayerScale diagonal
matrices diag(λl,1, . . . λl,d) and diag(λ′

l,1, . . . λ
′
l,d), equation (11) becomes

x′
l = xl + diag(λl,1, . . . λl,d) MSA(LN(xl))

xl+1 = x′
l + diag(λ′

l,1, . . . λ
′
l,d) MLP(LN(x′

l)).
(12)

In the case of deeper architectures (i.e., with a total of 24 transformer blocks),
these diagonal matrices are initialized to a value ε. This value is equal to
0.1 for architectures with up to depth 18, 10−5 for those with depth 24, and
10−6 for those with depth 38.

Class Attention. On the other hand, class attention introduces a new
way to handle the [class] token: instead of prepending it to the sequence
of the input tokens at the beginning of the sequence of transformer blocks,
Touvron et al. (2021b) first process the input tokens through a series of
Transformer blocks (according to equation (12)), in a stage called self-
attention stage. They then prepend the [class] token, and go through a
series of blocks composed of a Multi-Head Class Attention block followed
by an MLP block. They call this stage class-attention stage. A Multi-Head
Class Attention block is like a Multi-Head Self-Attention block where only
the Attention of the [class] to the other tokens is computed, and the other
tokens are left untouched. Formally, given a [class] token xclass, a vector
z = [xclass;xpatches] given by the concatenation of the class token and the
patches, learnable weight matrices Wq, Wk, Wv, and Wo in R

d×d, and
corresponding bias vectors bq, bk, bv, and bo in R

d where d is the size of the
token embeddings, they first perform the projections:

Q = Wqxclass + bq

K = Wkz + bk

V = Wvz + bv.

(13)

They then compute class attention as

CA(Q,K,V ) = WoSoftmax

(

QKT

√

d/h

)

V + bo, (14)

16



where QKT ∈ R
h×1×p, and h is the number of heads and p is the number of

patches. The class-attention stage is composed of two Class Attention blocks,
and the resulting architecture is dubbed Class Attention in Transformers
(CaiT).

2.3.4 Cross-Covariance Attention and XCiT
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Figure 7: Schematic figure representing the overall structure of the XCiT
block. Figure borrowed from El-Nouby et al. (2021).

Dosovitskiy et al. (2021) show that using a smaller patch size brings
better results. However, as already mentioned in section 2.3.2, the attention
operation has O(n2) complexity for both memory and runtime, making
decreasing the patch size hard. For this reason, El-Nouby et al. (2021) propose
an alternative to the attention operation, called Cross-Covariance Attention,
with complexity O(n). The corresponding ViT-like architecture is called
Cross-Covariance Image Transformer (XCiT). Overall, XCiT has a structure
analogous to that of CaiT (i.e., with self-attention and class-attention phases),
with the difference that it employs Cross-Covariance Attention instead of
Self-Attention. As a further difference, models with depth 12 initialize
LayerScale’s ε to 1 instead of 0.1 (as discussed in section 2.3.3).

Cross-Covariance Attention. Cross-Covariance Attention (XCA) is an
attention mechanism based on cross-covariance, which works along the
features dimension, i.e., along each dimension of the token embeddings.
Given a queries matrix Q, a keys matrix K, and a values matrix V , as
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defined in section 2.3.1, cross-covariance attention is defined as

XC-Attention(Q,K,V ) = V Softmax

(

K̂T Q̂

τ

)

, (15)

where K̂ and Q̂ are the L2-normalized versions (i.e., with unit L2 norm) of K
and Q. It is called cross-covariance attention as, in the case of self-attention
K̂T Q̂ = W T

k XTXWq is the cross covariance matrix of K̂ and Q̂, Cov(K̂, Q̂).
Cross-covariance is linear in time in the number of elements in X, i.e., the
number of patches N . We can interpret XCA as a dynamic, data-dependent,
1 × 1 convolution along the axis of the features of the embeddings, as each
patch is multiplied by the same data-dependent weight-matrix.

Finally, τ corresponds to a learnable temperature scaling parameter,
which is applied to help the convergence of the training procedure.

Local Patch Interaction. Given the nature of XCA, the patches do
not explicitly interact with each other. For this reason, after computing
XCA, El-Nouby et al. (2021) apply the so-called Local Patch Interaction
(LPI), which consists of two 3× 3 depth-wise convolutional layers with batch
normalization and GELU activation between the two layers.

Convolutional Patch Projection. Differently than the previous works
about ViTs introduced above, following Graham et al. (2021), El-Nouby
et al. (2021) embed the input patches into tokens using a series of 3 × 3
convolutions of stride 2 with GELU activation in between. As an exam-
ple, for a model with embedding dimension dmodel with patch size 16, an
RGB input image of size (3, 224, 224) goes through the following trans-
formations: (3, 224, 224) → (dmodel/8, 112, 112) → (dmodel/4, 56, 56) →
(dmodel/2, 28, 28) → (dmodel, 14, 14). We note that 224/16 = 14, i.e., the
final result, as expected, is a set of 14 × 14 vectors of size dmodel, each of
which is mapped from a patch. Finally, they use fixed, sinusoidal positional
encoding as in the original work from Vaswani et al. (2017).

2.3.5 Data augmentations

Apart from classic data augmentation strategies, such as random flipping,
there are more advanced data augmentation techniques. The ones employed
by Touvron et al. (2021a) are MixUp, CutMix, RandAugment, and Random
Erasing.
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MixUp and CutMix. MixUp (Hongyi Zhang et al. 2017) consists of
creating an image X̃ ∈ {0, 1}H×W of size (H, W) and a corresponding label
ỹ as the convex combination of two images and their respective labels. This
means that, given two images X1 and X2, with respective one-hot-encoded
labels y1 and y2, MixUp generates an image X̃ = λX1 + (1 − λ)X2, and
the same is applied to the one-hot-encoded labels: the resulting label is
ỹ = λy1 + (1 − λ)y2. CutMix (Yun et al. 2019) follows a similar principle
by cutting a portion of an image and superimposing it on another image.
Formally, the resulting image is computed as X̃ = M ⊙X1 + (1−M )⊙X2,
where 1 is the matrix of all ones, and M is a masking matrix. In particular,
the masking matrix M has zeros everywhere apart from the bounding box
B delimited by the coordinates (rx, ry, rh, rw), where rx and ry are sampled
uniformly along the height and the width of the image, rh = H

√
1 − λ and

rw = W
√

1 − λ. In this way, the box is placed randomly in the image and has
area proportional to λ. We show some examples for these data augmentations
in figure 8.

(a) MixUp example. (b) CutMix example.

Figure 8: Examples for MixUp (Left) and CutMix (Right) data augmenta-
tions.

RandAugment. RandAugment (Cubuk et al. 2020) improves the so-called
automated augmentations, which automatically select the best augmentations
for a given model and task, among a given list of possible transformations (e.g.,
rotation and brightness change). Automated augmentations are effective,
but need a separate search phase. RandAugment reduces the search space,
which enables training without a prior search phase. In particular, given K
augmentations, RandAugment chooses each transformation with probability
1/K. We show an example for three RandAugment augmentations in figure 9.

Random Erasing. Finally, Random Erasing (Zhong et al. 2020) randomly
selects a portion of pixels in an image, and occludes them, either by setting
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Figure 9: Original image (Left) and three examples of augmented images
generated by RandAugment

them to 0 or by sampling their value from a normal distribution with mean
and standard deviation equal to those of the dataset. We show an example
for Random Erasing in figure 10.

Figure 10: Original image (Left) and example of erasure generated by Random
Erasing.
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3 Related work

3.1 Improving the robustness-accuracy-efficiency trade-off

Previous work addresses the problem of efficiency of robustness in different
ways. One line of work focuses on making adversarial training more efficient:
Shafahi et al. (2019) proposes to re-use adversarial examples from previous
epochs to avoid generating new ones every time, while Wong et al. (2020)
find an effective way to perform adversarial training with just 1-step FGSM.
On the other hand, Sehwag et al. (2020) and Kundu et al. (2020) work on
compressing the model’s size by pruning in ways that are fully compatible
with adversarial training. Other works show that both robustness and
accuracy are improved when we use either extra unlabeled data (Carmon
et al. 2019), or synthetic data (Sehwag et al. 2021; Gowal et al. 2021) when
performing adversarial training.

3.2 Robustness of Vision Transformers

3.3 Robustness against perturbations

Whether ViTs are more robust than CNNs has been a controversial topic
so far, with contrasting results based on the different contexts and settings
where the models are tested. On one side, benignly trained ViTs show to be
more robust than CNNs to non-adversarial perturbations, while on the other
side, different works reported contrasting results when it came to adversarial
perturbations, depending on the strength of the attack.

3.3.1 Natural perturbations

Many recent works (Paul et al. 2021; Bhojanapalli et al. 2021; Bai et al. 2021)
agree on the fact that ViTs are more robust than CNNs when it comes to out-
of-distribution samples (the ImageNet-R dataset by Hendrycks et al. (2021)),
as well as perturbations such as common corruptions (the ImageNet-C dataset
by Hendrycks et al. (2019a)), natural adversarial examples (the ImageNet-A
dataset by Hendrycks et al. (2019a)), and Stylized-ImageNet (Geirhos et al.
2018). ViTs are compared to both ResNets (Bhojanapalli et al. 2021; Bai et
al. 2021) and Big Transfer (BiT,Kolesnikov et al. (2020)) models (Paul et al.
2021). In particular, Bai et al. (2021) compare ResNets to DeiT models. For
a fair comparison, they tune both ResNet-50 and ResNet-101 to achieve the
best performance possible on these datasets. Despite this, DeiT still shows
better robustness. On the other hand, Bhojanapalli et al. (2021) pre-train
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ResNets and ViTs of different sizes on both JFT-300M (Sun et al. 2017) and
ImageNet-21k, two large datasets commonly used to pre-train large models.
They observe that also when the models are pre-trained on large datasets of
equal size, ViTs are more robust than ResNets. Moreover, they also observe
that, when scaling up to larger models, ViTs give a larger advantage on
natural corruptions than the advantage brought by larger ResNets.

ViTs show better robustness to patch corruptions as well. They are more
robust in the case of image occlusions (by applying CutOut (DeVries et al.
2017)), as observed by Paul et al. (2021), as well as to naturally perturbed
patches: Gu et al. (2021) built images in which they perturb only a limited
number of selected patches using augmentations like those of ImageNet-C.
ViTs are more robust in this case as well.

3.3.2 Adversarial perturbations

Weak perturbations. At the same time as they assess ViTs’ robustness
to natural perturbations, many works also study the robustness of non-
adversarially trained ViTs to adversarial examples. In particular, in the case
of attacks using ε ≤ 0.01 or weak attacks such as PGD, ViT-like models, as
well as ViT-CNN hybrids (Dosovitskiy et al. 2021) show better robustness
than CNNs (Bhojanapalli et al. 2021; Aldahdooh et al. 2021; Benz et al.
2021). On the other hand, Shao et al. (2021) find that adding convolutional
blocks can help in improving clean accuracy but at the expense of robust
accuracy. However, they also observe that increasing the ratio of attention
blocks helps to achieve better robust accuracy. Hence, ViT-CNN hybrids are
considered to be less robust than pure ViTs. Finally, using a larger model
such as ViT-L or employing convolutional layers to embed the patches does
not necessarily help robustness (Aldahdooh et al. 2021; Shao et al. 2021).

The better results obtained with attention-based models may be due to
several reasons. Benz et al. (2021) observe that ViT-like models leverage low-
frequency features of images, such as shapes, while adversarial perturbations
are usually high-frequency. Moreover, Paul et al. (2021) observe that ViTs
have a smoother loss landscape in the input space: previous work finds that
smoothness of models is indeed necessary to achieve both high clean and
robust accuracy (Yang et al. 2020). Benz et al. (2021) instead claim that
the lower robustness of CNNs is given by their shift-invariant property: this
property enables the adversary to fool a CNN with adversarial features in
any place of the image, instead of a limited area of the input. Finally, Shao
et al. (2021) hypothesize that ViTs are more robust because they learn more
generalizable, high-level information, instead of low-level one.
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Strong perturbations. When using slightly stronger attacks such as the
C&W attack (Carlini et al. 2017) or DeepFool (Moosavi-Dezfooli et al. 2016)
ViTs achieve very low robust accuracy (< 1%) but are still slightly better
than ResNets. However, when using stronger attacks, such as APGD or
AutoAttack used with ε = 4/255, both ResNets and ViTs have 0% robust
accuracy (Shao et al. 2021; Bai et al. 2021; Mahmood et al. 2021).

Transferability. In different works, it is also observed that, in general, the
transferability of adversarial examples is low (Bhojanapalli et al. 2021; Shao
et al. 2021; Aldahdooh et al. 2021). All these works note that, on one side,
when the architecture is similar, the transferability is better than when the
architecture is different. However, when the architecture is different, then
the transfer rate decreases. Nonetheless, Shao et al. (2021) and Benz et al.
(2021) observe that the transfer rate from ViTs to CNNs is slightly larger
than the opposite.

Attacks. As previously observed, transfer attacks do not work very well
between ViTs of different sizes nor between ViTs and CNNs. For this reason,
Wei et al. (2021) and Naseer et al. (2021) develop new attacks to improve
the transferability of adversarial examples targeting ViTs. On one hand, Wei
et al. (2021) propose an attack based on two concepts: PayNoAttention and
PatchOut, both aiming at reducing the model-specificity of the generated
adversarial examples. The former consists of not considering the Attention
blocks when computing the gradient with respect to the input, and the latter
consists in optimizing only a random subset of the input patches instead
of the whole input. On the other hand, Naseer et al. (2021), propose Self
Ensemble, which consists of a model that uses an MLP Head that takes
as input the [class] tokens output by all the transformer blocks, instead
of just the last one. In this way, the attack targets the full representation
capacity of the model.

3.4 Adversarial training for Vision Transformers

While many works focus on the adversarial robustness of transformers trained
without adversarial training, to the best of our knowledge, only two works
perform adversarial training of ViT-like models and study their robustness.

On the one hand, Shao et al. (2021) adversarially train ViT-B by per-
forming adversarial fine-tuning on CIFAR-10 models that were previously
pre-trained without adversarial training on ImageNet. They compare a
ViT-B with a WRN-34-10 (Zagoruyko et al. 2016), and a ResNet-18 (He et al.
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2015). In particular, they fine-tune the models using the original 32×32 reso-
lution of CIFAR-10, with patch size 4, instead of using the up-scaled 224×224
resolution with patch size 16, commonly used when fine-tuning ViTs. They
target the L∞ norm with ε = 8/255. To adapt the model to work with this
resolution, they down-sample the weight kernel of the convolutional token
embedding layer of the original ViT: the original kernel has size 16×16, with
stride 16, and the down-sampled one has size 4×4, with stride 4. As a result
of adversarial fine-tuning, their ViT-B obtains slightly lower robust accuracy
and slightly better clean accuracy than the WRN-34-10 they compare to,
and better robust accuracy and clean accuracy than the PreActResNet-18.
Moreover, the accuracies are all lower than many models of similar size in the
corresponding RobustBench (Croce et al. 2020a) leaderboard. The reason
for this could be the fact that these models are pre-trained on ImageNet
without adversarial training; hence, the models they fine-tune are not robust:
previous work (Hendrycks et al. 2019b) only shows that pre-training gives
an advantage in adversarial robustness when done adversarially.

On the other hand, Bai et al. (2021) manage to adversarially train DeiT-
S –a variant of ViT– to compare it to an adversarially trained ResNet-50.
In particular, they notice that adversarially training DeiT-S with 1-step
PGD, targeting the L∞ threat model with ε = 4/255, fails when using
the original training recipe (i.e., with full data augmentation, apart from
RandomErasing). For this reason, they gradually increase the intensity of
data augmentation in the first ten epochs. This method shows effective and
leads to adversarially training DeiT-S successfully. On the other side, they
observe that training a ResNet-50 using the same setup as DeiT with strong
data augmentation fails. However, with the original training recipe and
employing the GELU activation function, ResNet-50 achieves comparable
performance to the adversarially trained DeiT-S. Moreover, they note that
adversarially training DeiT-S without strong augmentation stabilizes the
training process but leads to a big hit in performance both in terms of clean
and robust accuracy. Finally, they do not ablate the data augmentations
–which can play a fundamental role in adversarial training (Rebuffi et al.
2021)– for DeiT, nor try any other newer variant of ViT and do not attempt
to adversarially fine-tune their robust models to other datasets.
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4 Experiments

4.1 Training recipe

Training Vision Transformers and their variations is a non-trivial task, and the
training recipe can make a significant difference in the final results (Touvron
et al. 2021a; Steiner et al. 2021). We argue that it is necessary to find the
best setup in terms of training hyperparameters to effectively train robust
ViTs and that this setup may differ from the best one found for standard
training. To find the best training setup, we ablate along the following
axes: ViT architecture, warming up the epsilon of the PGD attack, data
augmentation, and weight decay. We show that, by choosing the right recipe,
we can significantly improve the performance of adversarial training of a
ViT-like architecture and achieve state-of-the-art results on ImageNet.

4.1.1 Training setup

We run the ablations mentioned above on a subset of 100 randomly chosen
classes of the ImageNet dataset (Russakovsky et al. 2015) –which we call
ImageNet-100– to assess more quickly the choice of hyperparameters. We
select the architecture using variants that are comparable to ResNet-50.
However, after choosing the best architecture, we employ a smaller variant
to reduce the time of the hyperparameters search. We finally scale to a
larger variant when training on the full-size ImageNet dataset. ImageNet
is a dataset of 1000 classes and about 1.2M training samples of variable
high-resolution.

To show that the best setup for adversarial training (discussed in sec-
tion 2.1.2) may differ from the best recipe found for standard training, we
run the architecture, data augmentation, and weight decay ablations also for
standard training.

Apart from the Scaling up section (section 4.1.9), we run all the training
runs using machines with 8 TPUv3 cores. In all the runs, unless otherwise
stated, we use the same setup as the one used for DeiT (Touvron et al. 2021a).
We use as a batch size 64 × 8 = 512 (i.e. 64 samples per TPU core), and
the learning rate is chosen according to the formula provided by Touvron
et al. (2021a) (i.e. lr = 0.0005 × batch size

512 ), which corresponds to 0.0005 with
the batch size we use in most experiments. For all the training runs on
ImageNet, we train the model for 110 epochs, with a learning rate cosine
decay with a final value of 5 × 10−5, a 5-epochs warm-up from 5 × 10−6

and 10 epochs cool-down. Apart from the architecture ablation, we do not
employ repeated augmentations (Hoffer et al. 2020) to save training time.
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Repeated augmentations consists of repeating each batch 3 times: the first
one without data augmentations and the following ones with it. Hence,
employing repeated augmentations would be equivalent to doing 3× the
number of epochs.

Finally, unless otherwise stated, we use FGSM for adversarial train-
ing (Wong et al. 2020), initializing the adversarial perturbation to be uni-
formly distributed in [−ε, ε], and adding 10−5 to avoid numerical instability.
Moreover, we apply early-stopping, i.e., we always evaluate the checkpoint at
the epoch where the model was performing best in terms of FGSM accuracy
on the test set.

4.1.2 Evaluation setup

For the final ablation and the scaled-up models trained on ImageNet, we
run AutoAttack (Croce et al. 2020c), an ensemble of white- and black-box
attacks. We run the attack on the subset of 5000 ImageNet images used for
the RobustBench benchmark (Croce et al. 2020a). Given that AutoAttack is
composed of four attacks, two of which are black-box, it is computational
expensive. To strike a balance between strength and computational cost,
instead, we assess the robustness of the individual ablations using APGD-
CE (Croce et al. 2020c). APGD-CE is a parameter-free attack, which is the
first of the ensemble that makes up AutoAttack. We run this attack with 5
restarts and 100 iterations, the same settings of the attack that is part of
AutoAttack.

4.1.3 Implementation details

We base our implementation on the PyTorch Image Models repository (Wight-
man 2019)4, which includes the timm library and provides a template training
script. This library uses the PyTorch framework (Paszke et al. 2017). In
particular, given that we run our experiments on Tensor Processing Unit
(TPU) devices, we use the PyTorch XLA library, which compiles PyTorch
code to the XLA5 Intermediate Representation (XLA IR), needed to run
the computations on TPUs. The XLA IR consists of a graph representing
the computation performed on tensors. The graph is then compiled and
optimized (e.g., by fusing operations when possible). To use timm’s utility
functions to work with TPUs, we use the bits and tpu branch of PyTorch

4https://github.com/rwightman/pytorch-image-models/
5XLA stands for Accelerated Linear Algebra, more information about the XLA compiler

can be found here: https://www.tensorflow.org/xla/architecture
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Image Models6, which introduces the compatibility of the library with XLA
and TPUs.

We adapt timm’s default training script to perform adversarial training:
in particular, we add an abstraction relative to the loss computation; instead
of computing it with a function, we compute the loss with a callable PyTorch
nn.Module object, which returns three outputs: the loss, the outputs of
the model given the clean data as input, and, as an Optional type, the
outputs of the model given the perturbed data. In this way, we make the loss
computation modular, and we enable computing the loss in different ways:
for instance, it can be computed just on clean data, as done in standard
training. As an alternative, it can be computed on the perturbed data,
as done in adversarial training, or can be computed with a different loss
that uses both clean and perturbed data (as in the case of the TRADES
loss (Hongyang Zhang et al. 2019)).

Because of a bug in PyTorch XLA7, when we run the attacks (e.g., FGSM)
during training, we have to set the model to the .train() mode (which
influences the behavior of batch normalization layers). However, this should
not impact the overall robustness of the models (Pang et al. 2020). Another
issue we face is compilation time: as mentioned above, when using XLA, the
computational graph of each training step must be compiled. Given that we
run adversarial training, the graph representing the training step does not
only include a forward and a backward pass through the model, together
with the model’s weights update; it also includes the attack steps, making
the overall computational graph extremely large, which takes a significant
time to compile (in the order of hours in the case of 10-steps TRADES). For
this reason, after each attack step, we call the xm.mark step() function8 to
force XLA to compile and execute the graph consisting of just one attack
step, to keep the graph small enough.

Finally, the carbon footprint of the project, measured via Google Cloud’s
Carbon Footprint Console9, from November up to February is 14 kgCO2

10.
For scale, a flight from Paris to London generates around 55.7 kgCO2 per
person in economy class11.

6https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu. The
branch may be eventually merged into main. Hence, this URL may become invalid.

7https://github.com/pytorch/xla/issues/3361
8https://pytorch.org/xla/release/1.10/#running-on-a-single-xla-device
9https://cloud.google.com/carbon-footprint

10March data is not yet available as of the date of the submission of this thesis, i.e.,
April 1, 2022

11Computed on https://www.icao.int/environmental-protection/Carbonoffset/

Pages/default.aspx

27

https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu
https://github.com/pytorch/xla/issues/3361
https://pytorch.org/xla/release/1.10/#running-on-a-single-xla-device
https://cloud.google.com/carbon-footprint
https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx
https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx


Table 1: Comparison of the different architectures, we report in bold the
best results.

Architecture
Standard

training

Adversarial

training

Clean Clean APGD-CE

DeiT-S (Touvron et al. 2021a) 67.38 62.52 33.32

CaiT-S-12 (Touvron et al. 2021b) 80.28 70.20 35.84

XCiT-S12 (El-Nouby et al. 2021) 90.44 85.06 54.80

4.1.4 ViT architecture choice

After the introduction of Vision Transformers, several variations have been
proposed, to solve some issues present in the first formulation of trans-
formers (Dosovitskiy et al. 2021). In particular, we focus on the DeiT
architecture (Touvron et al. 2021a) (presented in section 2.3.2), on Class-
Attention in Image Transformers (CaiT) (Touvron et al. 2021b) (presented in
section 2.3.3), and on the Cross-Covariance Image Transformer (XCiT) (El-
Nouby et al. 2021) (presented in section 2.3.4). Additionally, both CaiT and
XCiT have two class attention blocks. With this ablation, we aim at seeing
whether the innovations of the more recent architectures help improve the fit
to adversarial training for L∞ norm adversarial perturbations. Since we do
not use a larger dataset for pre-training (e.g. ImageNet-21k), our baseline will
be the training setup introduced by the DeiT paper (Touvron et al. 2021a).
In particular, we use DeiT-S (22.05M parameters, 4.61 GFLOPs), XCiT-S12
(26.25M parameters, 4.82 GFLOPs), and CaiT-S12 (25.61M parameters,
4.76 GFLOPs). All the models have input size 224×224, embedding size
dmodel = 384, and 12 attention blocks. They are trained with a patch size of
16 and 224×224 resolution. We aim at seeing which architecture works best
with adversarial training, “out-of-the-box”.

The results in table 1 suggest that Class Attention helps with the fit to
adversarial training, and Cross-Covariance attention boosts, even more, the
performance. For this reason, we choose XCiT as the base architecture for
the rest of our experiments. As mentioned above, to speed up the ablation
study, from now on, we will be using the smallest variant of XCiT, XCiT-N12,
with a patch size of 16.
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Table 2: Comparison of the different numbers of ε warm-up epochs, we report
in bold the best results.

Epochs Accuracy

Clean APGD-CE

0 48.46 30.48

5 52.04 32.86

10 54.62 33.84

20 56.10 34.88

30 56.12 34.54

4.1.5 Epsilon warm-up

Shao et al. (2021) observe that adversarially training a DeiT on ImageNet
would fail using the same setup like the one in the DeiT paper. For this
reason, we attempt training an XCiT-N12 to see if the training succeeds.
Even though the training run succeeds, the model struggles in the first few
epochs. A possible solution could be to make the task easier for the first
few epochs and then make it gradually harder. Given that we ablate the
different data augmentations, we cannot do a data augmentation strength
warm-up as Shao et al. (2021) do. An alternative is warming-up the ε that
bounds the adversarial perturbations (Qin et al. 2019) by linearly increasing
ε each epoch. We evaluate the impact of this technique by exploring a range
of values (0, 5, 10, 20, 30).

We can observe in table 2 that using 20 epochs as warm-up duration
gives a significant increase both in clean accuracy (+7.64%) and APGD-CE
accuracy (+4.4%).

4.1.6 Data augmentation

Data augmentation plays a crucial role in adversarial training (Rebuffi et al.
2021). Moreover, Touvron et al. (2021a) and Steiner et al. (2021) remarked
the importance of appropriate data augmentation and regularization for
training ViTs. For this reason, we run a thorough ablation for the data
augmentations used by default for training DeiTs: CutMix (Yun et al. 2019),
RandAugment (Cubuk et al. 2020), MixUp (Hongyi Zhang et al. 2017),
and Random Erasing (Zhong et al. 2020) (all covered in section 2.3.5). We
try all 16 combinations of these augmentations while always keeping basic
augmentations such as horizontal flipping, random resize-rescale, and color
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Table 3: Comparison among different data augmentation strategies, we report
in bold the best results.

Data Augmentation Policy
Standard

training

Adversarial

training

MixUp CutMix RandAugment Random Erasing Clean Clean APGD-CE

✗ ✗ ✗ ✓ 77.22 67.28 39.22

✗ ✗ ✗ ✗ 76.60 66.78 39.22

✓ ✗ ✗ ✗ 76.34 61.04 38.56

✓ ✗ ✗ ✓ 76.02 60.46 38.26

✓ ✓ ✗ ✗ 76.48 62.04 38.18

✗ ✗ ✓ ✗ 78.62 65.34 37.64

✗ ✗ ✓ ✓ 78.08 64.76 37.62

✓ ✓ ✓ ✓ 75.32 56.64 35.38

jitter. We show the top seven set-ups in table 3, ranked by APGD-CE
accuracy. We also show the results for the original setup in the last row.
Surprisingly, the augmentation setup that leads to the best results in terms
of APGD-CE accuracy is the one with no additional augmentations, apart
from the basic ones listed above, together with the one that uses only
Random Erasing. These set-ups improve APGD-CE accuracy by 3.84%.
This phenomenon could be because adversarial training is a powerful enough
regularizer on its own. We note that the setup with only Random Erasing
has the same robust accuracy as the one with no complex augmentations but
has a slightly larger clean accuracy. Despite this, we choose as the setup for
the next experiments the one without Random Erasing, to keep the overall
setup as simple as possible.

Moreover, we highlight that the best combination of standard training is
not the same as the best one for adversarial training. If we used the same set
of augmentations as standard training, we would have had a drop of 1.58% in
terms of APGD-CE accuracy, and a drop of 1.94% in terms of clean accuracy.
This means that the best training recipe for standard training could lead to
sub-par results if used for adversarial training.

4.1.7 Weight decay

As pointed out by Pang et al. (2020), weight decay has an important role
to make models more robust: as a matter of fact, a larger weight decay
helps reducing the generalization gap for robust accuracy. For this reason,
we ablate trying several values for the weight decay, in different orders of
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Table 4: Comparison among different weight decays, we report in bold the
best results.

Weight Decay
Standard

training

Adversarial

training

Clean Clean APGD-CE

0 76.32 66.44 39.02

0.001 76.32 66.40 39.04

0.01 76.26 66.28 38.66

0.05 76.36 67.16 39.30

0.1 76.58 67.28 39.92

0.5 76.72 68.78 42.02

1.0 76.12 67.68 40.88

magnitude: 0, 0.001, 0.01, 0.05, 0.1, 0.5, 1. We show the results in table 4.
The weight decay used to train XCiT originally is 0.05, but we get the best
results with the weight decay equal to 0.5, both in terms of clean and robust
accuracy, with a boost of 2.72% for robust accuracy and 1.62% for clean
accuracy over the original weight decay (0.05). We also observe that, in
this case, weight decay does not make a big difference for standard training.
Hence, basing the adversarial training weight decay decision on the standard
training results could be suboptimal.

4.1.8 Final ablation and discussion

Ablation setup. As already mentioned in section 4.1.1, we finally run a
step-by-step ablation on a larger scale by employing larger models trained on
the full-scale ImageNet dataset. We validate these results using AutoAttack.

In particular, starting from the original training recipe used for standardly
trained DeiT-S, we evaluate 1) the impact of the addition of Class Attention
and Cross-Covariance attention, 2) the impact of using a warm-up for ε
3) the impact of better-tuned data augmentation, and 4) the impact of
better-tuned weight decay. For the warm-up we use a schedule of 10 epochs,
instead of 20, which was the warm-up duration that led to the best results on
ImageNet-100. We do so as ImageNet is larger than ImageNet-100, and we
argue that, after 10 epochs, the model has already seen enough easy samples.

Discussion. We can see the results of this ablation in table 5. We first
observe that the use of XCiT leads to a greatly improved clean accuracy
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Table 5: Summary of the improvements we provide. Overall, we improve the
clean accuracy by 6.04%, and the robust one by 9.08% over the baseline.

Feature Clean accuracy AutoAttack accuracy

DeiT-S 66.30 32.70

+ Cross-Covariance Attention (XCiT-S12) 71.68 (+5.38) 28.70 (−4.00)

+ Epsilon warmup (10 epochs) 71.98 (+0.30) 29.36 (+0.66)

+ Tuned data augmentation 71.70 (−0.28) 38.78 (+9.42)

+ Tuned weight decay 72.34 (+0.64) 41.78 (+3.00)

(+5.38%), which comes at the expense of robust accuracy. However, this
gap is filled with successive improvements. In particular, the improvement
given by the tuned data augmentation, as well as the one given by the
tuned weight decay, brings a significant boost in terms of robust accuracy.
This improvement totals up to an improvement of 12.42%. Overall, the
final model has 72.34% clean accuracy, and 41.78% robust accuracy. These
results are better than the top entry of the RobustBench ImageNet L∞

leaderboard: a WideResNet-50-2 (69M parameters, 11.47 GFLOPs) from
Salman et al. (2020) which has 68.46% clean accuracy and 38.14% robust
accuracy. Moreover, we improve over the results from Bai et al. (2021): their
GELU ResNet-50, which was thoroughly ablated, achieves 67.38% clean
accuracy and 35.51% robust accuracy.

We observe that the data augmentation setup, as well as weight decay,
could interact with the dataset size. A smaller dataset may need stronger
data augmentation, as the model could overfit. In particular, this was
experimentally validated for ViTs by Steiner et al. (2021) and Touvron et al.
(2021a). On the other side, we note that we use minimal data augmentation
on the smaller ImageNet-100. Hence, we argue that, as ImageNet is larger
than ImageNet-100, it should require the same (if not even weaker) data
augmentation. Regarding weight decay, similarly, for a smaller dataset, we
may require a larger weight decay to avoid overfitting, while a smaller weight
decay may be desirable for a larger dataset to avoid underfitting. However,
we can see in our ablation that using a larger weight decay gives a significant
3% robust accuracy improvement, so this may not be the case for adversarial
training.
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4.1.9 Scaling up

Setup. Given that our training configuration scaled successfully from XCiT-
N12 to XCiT-S12, we check whether it scales up to even larger architectures:
XCiT-M12 (which has dmodel = 512, i.e., 1.5× the size of XCiT-S12) and
XCiT-L12 (which has dmodel = 768, i.e., 2× the size of XCiT-S12). Both
XCiT-S12 and XCiT-M12 have 8 heads in the Multi-Head-Attention layers,
while XCiT-L12 has 16. Given the larger size of these models, we do the
training using a pod with 64 TPUv4 cores (as opposed to 8 TPUv3 cores).
For the sake of fairness, we also train an additional XCiT-S12 model on a
machine with 64 TPUv4 cores to compare the training time. We use the
largest batch size that can fit into each device, which is 256 for XCiT-S12 and
XCiT-M12, and 128 for XCiT-L12. We scale the learning rates as described in
section 4.1.1. The total training time for XCiT-S12 is 19h30m, for XCiT-M12
it is 33h, and for XCiT-L12 it is 39h.

Discussion. We show the results in table 6. We note that XCiT-M12 brings
a significant improvement over XCiT-S12, both in terms of clean accuracy
(+1.7%) and robust accuracy (+3.46%). Moreover, the performance of
both XCiT-S12 and XCiT-M12 is better than that of the WideResNet-50-
2, which not only has more parameters but also more GFLOPs. Finally,
interestingly, XCiT-L12 has worse robust accuracy than XCiT-M12. When
looking deeper into this, we note that XCiT-L12 has better FGSM accuracy
than XCiT-M12 (55.88% vs. 53.82%) on the RobustBench ImageNet subset,
as well as better PGD-10 accuracy (52.22% vs. 51.50%). However, when it
comes to APGD-CE (the first of the AutoAttack ensemble), XCiT-L12 is
outperformed by XCiT-M12 (46.14% vs. 47.58%). These numbers suggest
that under stronger attacks the advantage of XCiT-L12 vanishes completely.
This could be because XCiT-L12 may require further tuning in the training
recipe to leverage its full potential, given both the different embedding sizes,
as well as the different number of heads.

To better understand the trade-off, we also standardly train an XCiT-S12,
XCiT-M12, and an XCiT-L12, for 100 epochs, using the recipe from El-Nouby
et al. (2021) (apart from repeated augmentations). XCiT-S12 has 80.36%
clean accuracy (compared to 72.34% clean accuracy for the robust model),
XCiT-M12 has 81.71% clean accuracy (compared to 74.04% clean accuracy
for the robust model), and XCiT-L12 has 82.65% clean accuracy (compared
to 74.60% clean accuracy for the robust model). Overall the relative drop in
terms of clean accuracy is around 10% for all the models.

Finally, we compare our XCiT-M12 (46M parameters, 8.54 GFLOPs) to
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the ResNeXt-152-32x8d with SiLU activation function from Xie et al. (2020)
(120M parameters, 66.26 GFLOPs). They report 78.2% clean accuracy and
51.2% PGD-200 accuracy; while the clean accuracy is better than the one of
XCiT-M12, our model has PGD-200 a accuracy of 51.91%, which is on-par
with their result, with a model that is 2.6× smaller and has 7.75× less
GFLOPs.

Table 6: Results obtained when scaling up the model size, also in comparison
to robust ResNets. The GELU ResNet-50 result is from Bai et al. (2021),
while the WideResNet-50-2 is from Salman et al. (2020). The robust models
trained by us are in bold.

Model dModel Parameters GFLOPs Clean Accuracy AA Accuracy

GELU ResNet-50 — 25M 4.11 67.38 35.51

WideResNet-50-2 — 68M 11.47 68.46 38.14

XCiT-S12 324 26M 4.82 72.34 41.78

XCiT-M12 512 46M 8.54 74.04 45.24

XCiT-L12 768 104M 18.97 74.60 43.78

4.2 Robust fine-tuning

On the one hand, previous work showed that using additional data when
doing adversarial training helps (Schmidt et al. 2018). On the other hand,
ViTs give significantly better results on smaller datasets such as CIFAR-
10 (Krizhevsky 2009) and VTAB datasets (Zhai et al. 2019) when they are
pre-trained on larger ones (e.g. ImageNet or ImageNet-21k). Moreover, from
the practical point of view, fine-tuning is extremely useful, as practitioners
can fine-tune a pre-trained model on a different dataset in a smaller amount
of time and compute. For this reason, we use the training setup used for
ImageNet to train an ε = 8/255-robust model and then fine-tune it on CIFAR-
10, as well as other high-resolution datasets such as Caltech 101 (Fei-Fei et al.
2004) and Oxford Flowers (Nilsback et al. 2008). Caltech-101 is a dataset of
pictures of resolution around 300×200 with 101 classes, very different each
from the other (hence, it is coarse-grained), with about 80 to 500 images per
class. Hence, the number of samples per class can be fairly small. Oxford
Flowers, instead, is a dataset of 102 classes of flowers, each of which has 40
to 258 high-resolution images. Since these are all flowers, the classes do not
differ very much. Hence, we consider this dataset to be fine-grained. Finally,
CIFAR-10 is a dataset of images of resolution 32×32 with 10 classes and 50k
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training samples.

Pre-training. As mentioned above, we pre-train a XCiT-S12 on ImageNet
with ε = 8/255. Using the same setup as the ε = 4/255 training, we observe
strong label leaking (which was also observed by previous work on ViTs
adversarial training (Herrmann et al. 2021)). To solve this, we use 2-steps
FGSM instead of 1-step FGSM as the attack for adversarial training. By
doing so, we manage to train a model which has 25.00% AutoAttack accuracy
and 63.46% clean accuracy on the subset of 5000 images from RobustBench
when using ε = 8/255 as attack budget.

4.2.1 Fine-tuning

Table 7: Summary of the results for robust fine-tuning on high-resolution
datasets. The robust models trained by us are in bold. The AutoAttack
accuracy of the models fine-tuned standardly is marked “—” as they are
non-robust.

Fine-tuning Model
Dataset

Caltech-101 Oxford Flowers

Clean AutoAttack Clean AutoAttack

Standard
XCiT-S12 90.42 — 89.08 —
ResNet-50 86.97 — 82.30 —

Adversarial
XCiT-S12 89.66 49.66 85.01 29.37
ResNet-50 83.22 33.90 70.61 21.52

High resolution datasets. We fine-tune the model pre-trained on Ima-
geNet with ε = 8/255 on the high-resolution datasets Caltech-101 and Oxford
Flowers. We choose these datasets as the former is coarsely-grained, while
the latter is fine-grained, making the set of tasks diverse. We fine-tune
using ε = 8/288 for 20 epochs and the same training recipe as the one used
for pre-training, with the difference that we do adversarial training with
1-step FGSM instead of 2-steps, and we do not employ a warm-up for ε. We
also do a fine-tuning run without adversarial training to better quantify the
clean-robust accuracy tradeoff. For comparison, we fine-tune, with the same
set-ups for both standard and adversarial training, the ResNet-50 pre-trained
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with ε = 8/255 from the repository of Salman et al. (2020)12. On the subset
of 5000 ImageNet samples from RobustBench, this model has 54.90% clean
accuracy and 19.72% AutoAttack accuracy.

From table 7 we can see that: 1) we can easily fine-tune both the
architectures out-of-the-box. 2) Our XCiT achieves the best results, by a
significant margin, for both the standardly and adversarially trained models.
3) We can observe that, for XCiT-S12, there is a very good robustness-
accuracy trade-off, as the robust model trained on Caltech-101 has a drop of
0.76% w.r.t. the standardly trained model (vs. a 3.75% drop for ResNet-50),
and the robust model trained on Oxford Flowers has a drop in terms of
clean accuracy of 3.99% (vs. an 11.69% drop for ResNet-50). 4) Despite the
larger clean accuracy, XCiT-S12 is more robust, having a robust accuracy of
13.88% better on Caltech-101, and 10.88% better on Oxford Flowers.

Adapting to small resolution images. The pre-trained model is meant
for inputs with patch size 16. However, such a patch size would be too
large for datasets of smaller images such as CIFAR-10 (which has 32×32
resolution). For this reason, we need a way to adapt the model to support
a different patch size. Previous work (Shao et al. 2021) achieves this by
down-sampling the weights of the convolutional layer that is used by ViT
to embed each patch. However, as presented in section 2.3.4, XCiT uses 4
subsequent convolutional layers to embed 16×16 patches into 1-D vectors,
and each layer has stride 2. To embed 4×4 patches, we need to use just 2
subsequent convolutions with stride 2. For this reason, we adapt our model
by setting the stride of the first two convolutional layers to 1.

CIFAR-10. Given the smaller size and resolution of the CIFAR-10 dataset,
we fine-tune the robustly trained model using TRADES (Hongyang Zhang
et al. 2019) (presented in section 2.1.2), with PGD-10 as the attack. Similar
to the high-resolution datasets, we fine-tune for 20 epochs. However, we
remove the color jitter data augmentation, as the inputs are smaller and
would make the task too hard. Moreover, we search for the best learning
rate, which we find to be 2× 10−4 (as opposed to 5.0× 10−5 that we used for
pre-training and the high-resolution datasets). We probably need a larger
learning rate to better tune the input embedding layer whose structure we
change. Finally, given the smaller resolution of the images, we change the
values for the random scale and crop data augmentation as follows: the
ratio of possible crop ranges from [0.75, 1.33] to [0.95, 1.05], and the input

12https://github.com/microsoft/robust-models-transfer
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re-scaling range from [0.08, 1.0] to [0.8, 1.2]. If we kept these large ranges,
then very few pixels of the original image would remain after cropping and
resizing, hence the task would be too hard, and the model would underfit.
Using this setup, we obtain a model with 90.06% clean accuracy and 56.14%
AutoAttack accuracy. To highlight the necessity of pre-training, we also
train from scratch on CIFAR-10 using the same setup without pre-training
for 300 epochs. We also do a training run using additional synthetic data
from Sehwag et al. (2021) to –at least partially– compensate for the smaller
size of the dataset. By keeping the same batch size of the original setup, we
set each batch to be half of real data and half of generated data. We show
the results in table 8. Even though the results without pre-training are not
too bad, we note that the model pre-trained on ImageNet has a significant
boost in terms of both clean and robust accuracy.

Table 8: Results for CIFAR-10 fine-tuning

Training Clean Accuracy AA Accuracy

CIFAR-10 fine-tuning (with pre-training) 90.06 56.14
CIFAR-10 and synthetic data (from scratch) 80.01 47.88
Only CIFAR-10 (from scratch) 82.84 39.49

4.3 Semantic nature of XCiT’s adversarial perturbations

Given the different nature of the architectures based on attention-like mech-
anisms, such as XCiT, compared to CNNs, we explore the adversarial per-
turbations targeted for a robust XCiT, and we compare them with those
targeted for a non-robust XCiT (using the pre-trained checkpoints from the
timm library (Wightman 2019)), and those targeted to the robust GELU
ResNet-50 shared by Bai et al. (2021). We also explore how direct feature
visualizations look like (Engstrom et al. 2019).

4.3.1 XCiT’s adversarial perturbations

Perturbations visualization. We first visualize the adversarial pertur-
bations generated with a PGD-100 attack for a robust and a non-robust
XCiT, compared to those generated for a robust ResNet-50. Given that a
perturbation δ is in [−ε, ε], we rescale it to [0, 1] to visualize it as an image.
For this reason, we compute the visualized images δviz = δ+ε

2ε and we visualize
the intensity of the perturbation by transforming the image to grey-scale
colors.
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Figure 11: Comparison between the perturbations for a robust XCiT-S12
and a regular XCiT-S12.

We can see a random sample of images and their respective perturbations
in figure 11 (with more images and perturbations in appendix A.1). We
note that the shapes of the original images are visible in the robust XCiT
perturbations, while they are not in the non-robust XCiT ones.

Quantifying the semantic nature of perturbations. To quantify how
semantic the perturbations are, we propose to use high-performing models
(which are trained standardly) to classify the adversarial perturbations. We
argue that if a perturbation is semantic enough (i.e., tries to change the
nature of the input from the point of view of the human eye), then it should
be classified correctly by a model trained on ImageNet as the perturbations
should be focused on the shapes in the input image. We use, as classifiers,
a ConvNeXt-XL (Zhuang Liu et al. 2022), with 87.01% clean accuracy, a
BeiT-L (Bao et al. 2022), with 87.48% clean accuracy, and a Swin-B (Ze
Liu et al. 2021), with 86.32% clean accuracy, using the implementation and
pre-trained weights from the timm library (Wightman 2019). All the models
accept input size 224×224. We generate PGD-100 perturbations for the 5000
images subset of RobustBench for our robust XCiT-S12 and a non-robust
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XCiT-S12 with pre-trained weights from timm (Wightman 2019), as well as
for a robust ResNet50 from Bai et al. (2021)13 and a non-robust ResNet-50
from the timm library (shared by Wightman et al. (2021)). We apply to
the perturbations the same scaling we apply to visualize them to bring the
inputs into the [0, 1] range. We can see from table 9 that, according to this
metric, the perturbations generated for both robust models lead to non-trivial
accuracies and that the perturbations generated for XCiT-S12 are indeed
semantic, and more so than those generated for the robust ResNet-50.

Table 9: Top-5 accuracy of pre-trained ConvNeXt-XL, BeiT-L and Swin-L
when classifying adversarial perturbations generated for a robust XCiT-S12
and a non-robust one.

Perturbations generator
Classifier

ConvNeXt-XL BeiT-L Swin-L

Robust
XCiT-S12 43.86 49.52 40.24
ResNet-50 38.40 45.02 36.70

Non-robust
XCiT-S12 0.84 0.78 0.84
ResNet-50 0.82 0.74 0.80

4.3.2 Robust XCiT’s gradients

Gradients of robust CNNs are more aligned with human perception (En-
gstrom et al. 2019). In particular, in their work, they introduce a visualization
technique called direct feature visualization, by which they maximize the out-
put of a model at a specific activation in the penultimate layer by optimizing
an input image via PGD. They observe that the images generated in this
way using an adversarially-trained model contain semantically meaningful
information without the need for regularization terms on the input. We
explore a variation of this experiment: instead of maximizing a specific
activation, starting from uniformly random inputs, we run a targeted attack
that targets a random class, i.e., we change the input so that it is classified
with the given class with the highest confidence. We do so by optimizing
the input via PGD-100, using ε = 15. To the best of our knowledge, we are
the first to run a similar experiment on a robust ViT-like model. We can
see a set of random images and classes in figure 12, with more images in
appendix A.2.

13https://github.com/ytongbai/ViTs-vs-CNNs
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Figure 12: Comparison between the gradient accumulation for a robust
XCiT-S12 and a non-robust ResNet-50.

We make the following observations: 1) The non-robust XCiT gradients
have no semantic meaning. 2) Regarding the first image on the left, whose
target class is “small white” (a butterfly species), for both the robust models,
we can see a white portion in the shape of a butterfly with a black spot,
which is what a small white butterfly looks. 3) Regarding the image targeting
“feather boa” (feathery party apparel), we can see, in the case of the robust
XCiT-S12, long, colorful structures with feather-like edges. 4) For the images
targeting the “pot” class, we can see the borders of a pot in the case of the
robust XCiT-S12. We can also observe that we can see some plants as well,
meaning that, probably, in the datasets, pots are most often represented
when containing plants. 5) Finally, in the last image on the right, which
should target the “border collie” class, we can see a Border Collie for the
robust XCiT-S12 and the head of one in the lower right corner for the robust
ResNet-50.
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5 Conclusion and future work

Architecture and custom recipes. This work shows that, by shifting ar-
chitecture, we can significantly improve the robustness of image classification
models, by keeping a good accuracy-robustness-efficiency tradeoff. We do so
by identifying an architecture that has a good fit for adversarial training: the
Cross-Covariance Image Transformer (XCiT). We also show that to achieve
optimal results, it is important to find a tailored training recipe, which may
differ from the training recipe for standard training. Using this custom
recipe, we achieve state-of-the-art results, by a large margin, both in terms of
clean and robust accuracy. We believe that there may be other architectural
innovations that could lead to even better results. Nonetheless, researchers
should be aware that they may need a custom training setup to fully leverage
the benefits of such architectural innovations.

Fine-tuning. We further successfully show that ViTs can be efficiently
fine-tuned, for larger perturbations sizes, to very high accuracy on smaller
datasets. As a matter of fact, our tailored training recipe also works for
larger perturbations (i.e. ε = 8/255) with minimal changes. This enables
efficiently fine-tuning these models to other datasets and doing adversarial
training on smaller high-resolution datasets, thus improving the practicality
of adversarial training. Moreover, given the trends shown in standard training
of ViTs and previous work about adversarial training, we believe that XCiT
could further benefit from being trained on larger datasets such as ImageNet-
21k and then fine-tuned on ImageNet and other datasets. We suggest that
researchers should consider this option when doing adversarial training for
ViT-like models, given that, as we have shown, a model can be fine-tuned
efficiently in a few epochs.

Analyses. Finally, we analyze the gradients of our robust XCiT and
compare the visualizations to a state-of-the-art robust ResNet: we visualize
the adversarial perturbations and quantify that the perturbations found for
XCiT are more semantic than those of ResNet, suggesting that the robust
XCiT’s perturbations are more aligned with human perception. We believe
that further insightful analyses can be carried on, given the different nature of
ViT-like models. For this reason, we will release the checkpoints of our models
in three variants (XCiT-S12, XCiT-M12, and XCiT-L12), and, in the case of
XCiT-S12, for two perturbation sizes (ε = 4/255 and ε = 8/255). We believe
that this enables researchers to do further analyses that will improve our
understanding of why XCiT is particularly suitable for adversarial training.
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Pavel Laskov, Giorgio Giacinto, and Fabio Roli (2013). “Evasion attacks
against machine learning at test time”. In: Joint European conference
on machine learning and knowledge discovery in databases. Springer,
pp. 387–402.
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A Additional images

A.1 Adversarial perturbations visualization

(a) Original images

(b) Robust XCiT perturbations

(c) Non-robust XCiT perturbations

(d) ResNet-50 perturbations

Figure 13: Visualization of the perturbations found for different images, for
different models. The classes of the original images are, in order: Lhasa Apso,
oxygen mask, maze, dugong, flatworm, salt shaker, macaw, horizontal bar,
vulture, plectrum, knee pad, shoal, white-headed capuchin, bolete, impala,
worm snake.
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A.2 Gradients accumulation

(a) Seed images

(b) Robust XCiT gradients accumulation

(c) Non-robust XCiT gradients accumulation

(d) ResNet-50 gradients accumulation

Figure 14: Visualization of the gradient accumulation for different images,
for different models. The target classes are, in order: Chow Chow, drum,
whiskey jug, pug, purse, flamingo, lionfish, moped, barometer, T-shirt, newt,
beaker, Saluki, lion, stretcher, mortar.
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